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Abstract

Tracking the dynamic motion of individual nanoparticles or viruses offers quantitative insights 

into their real-time behavior and fate in different biological environments. Indeed, particle 

tracking is a powerful tool that has facilitated the development of drug carriers with enhanced 

penetration of mucus, brain tissues and other extracellular matrices. Nevertheless, heterogeneity is 

a hallmark of nanoparticle diffusion in such complex environments: identical particles can exhibit 

strongly hindered or unobstructed diffusion within microns of each other. The common practice in 

2D particle tracking, namely analyzing all trackable particle traces with equal weighting, naturally 

biases toward rapidly diffusing sub-populations at shorter time scales. This in turn results in 

misrepresentation of particle behavior and a systematic underestimate of the time necessary for a 

population of nanoparticles to diffuse specific distances. We show here via both computational 

simulation and experimental data that this bias can be rigorously corrected by weighing the 

contribution by each particle trace on a ‘frame-by-frame’ basis. We believe this methodology 

presents an important step towards objective and accurate assessment of the heterogeneous 

transport behavior of submicron drug carriers and pathogens in biological environments.
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1. Introduction

Analysis of the real-time motion of biological and synthetic particles, commonly referred to 

as single- or multiple-particle tracking (MPT) [1-3], is an increasingly popular approach to 

gaining insight into dynamic processes in living systems, such as the diffusion of proteins 

and lipids in cell membranes [4, 5], the kinetics and intracellular processes involved in viral 

infections [6, 7] as well as the mobility of pathogens in biofilms or mucus [8-10]. Because 

the motions of particles in an environment are governed by local viscous and elastic forces, 

particle traces from MPT can be further analyzed to infer the microstructural, rheological 

and barrier properties of different materials at the length scales relevant to nanoparticles and 

viral pathogens [11-14]. Particle tracking has been used extensively in the field of drug 

delivery, not only to characterize important barriers to drug delivery but also to quantify the 

extent to which engineered drug carriers can overcome these barriers. Indeed, MPT has 

enabled the development of nanoparticles capable of penetrating various mucus secretions 

[15-18], brain tissues [19] and other physiological gels [20-22], as well as investigations into 

the intracellular trafficking of nonviral gene carriers and polymeric nanoparticles [23-26].

Nevertheless, biological environments tend to be highly complex, often composed of a 

dense matrix of proteins, carbohydrates, cells and other biomacromolecules, and exhibiting a 

broad range of pore sizes. Particles introduced into such biological fluids will inevitably 

encounter varying degrees of steric obstruction and/or molecular interactions with the 

network. As particle sizes approach the characteristic mesh spacing of the network elements, 

the particles may exhibit increasingly heterogeneous motions, leading to orders of 

magnitude differences in mean squared displacements (MSD) and effective diffusivities 

(Deff) within the same particle population. In addition, the same particles may also exhibit 

distinct affinity to network elements; for example, otherwise identical viruses with different 

numbers of surface-bound antibodies may possess different antibody-mucin avidity [9, 27], 

and variations in the surface properties within a population of synthetic nanoparticles may 

likewise result in heterogeneous interactions with the matrix constituents. Thus, accurate 

measurement of the true distribution of particle behavior is essential to correctly assess the 

transport kinetics of nano drug carriers and other nanoparticulates.

While an intrinsic advantage of particle tracking is that it offers a means of capturing 

heterogeneity across individual particle traces, particle tracking data can suffer from 

inherent biases. The conventional practice in particle tracking is to obtain video recordings 

of particles in a medium, track their movements to quantify 2D particle displacements over 

time, and finally compute ensemble averages and distributions across all traces. Numerous 

particle detection and tracking methods exist [28-30], but a common and critical technical 

challenge emerges when particle tracking is applied to sub-micron entities capable of rapid 

diffusion into and out of the plane of focus (or scanning volume for 3D imaging). Such rapid 

diffusion results in shorter traces recorded for the majority of faster particles, and longer 

traces recorded for slower particles. When particles exhibit heterogeneous behavior, the 

calculated ensemble MSD and Deff at longer time scales inherently biases toward the slower 

subpopulation, since most fast-moving particle traces are too short to contribute MSD and 

Deff values at these time scales. This fundamental limitation, discussed previously [31, 32], 

can only be lessened by longer tracking times or improved depth of tracking.
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A less recognized and opposite bias occurs at shorter time scales, where relative 

contributions to the ensemble or distribution of MSD and Deff skew towards faster particles. 

This bias naturally arises because (1) the same fast-moving particle may appear multiple 

times in the focal plane as distinct traces, and (2) distinct particles may enter and leave the 

focal plane throughout the movie, and the rate at which these processes occur increases with 

particle speed. This bias is conceptually illustrated in Fig. 1, which shows that particle 

tracking in a fluid containing an equal mixture of fast- and slow-moving particles would 

result in a much greater number of fast-moving vs. slow-moving particle traces using 

standard 2D particle tracking analysis. Overestimating the fast-moving fraction represents a 

potential major concern when assessing the performance of drug carriers, since for many 

applications efficacy is correlated to the fraction of the drug carriers that can penetrate a 

biological barrier. Here, we present a simple and rigorous algorithm to correct for this bias 

with 2D particle tracking data, without requiring 3D video microscopy.

2. Materials and Methods

2.1. Simulation of heterogeneous nanoparticle transport

We simulated 3D Brownian diffusion of a population of particles seeded at equal density in 

a defined volume with a bimodal distribution of effective diffusivity (Deff), one centered at 

0.001 μm2/s (corresponding to ‘strongly hindered’ particles) and another at 1 μm2/s 

(corresponding to ‘mobile’ particles) at a time scale of 0.0667 s (the time step of our 

simulation). These Deff values are comparable to those we previously measured for muco-

inert and muco-adhesive drug carrier nanoparticles in human mucus secretions [11, 16]. Deff 

values were used to calculate a step size, and the locations of the particles from point to 

point were simulated following Marsaglia's method [33]. Briefly, the coordinates of a 

particle were determined by randomly selecting values x1 and x2 from independent uniform 

distributions on (−1, 1) such that , and then calculating , 

, and , where d is the step size. Particle 

trajectories were ‘recorded’ if they were within a defined focal plane for a minimum of 5 

frames, and trajectory segments for the same particle separated by more than 5 frames were 

treated as distinct traces.

2.2. Preparation of nanoparticles and viruses

Fluorescent, carboxyl-modified polystyrene beads (PS-COOH) sized 100 and 200 nm were 

purchased from Molecular Probes (Eugene, OR). PEGylated nanoparticles (PS-PEG) were 

prepared by conjugating 2 kDa amine-modified PEG (Rapp Polymere, Tuebingen, 

Germany) to PS-COOH particles via a carboxyl-amine reaction, as published previously [16, 

34]. PS-COOH and PS-PEG solutions were adjusted to equal particle concentration based on 

fluorescence intensity and microscopy imaging. In acidic (pH ~4) human cervicovaginal 

mucus (CVM) samples, PS-COOH nanoparticles are muco-adhesive and nearly always 

uniformly strongly hindered, while PS-PEG nanoparticles are muco-inert and nearly always 

uniformly fast-moving. Thus, a 50:50 mixture of the two in human CVM would mimic a 

heterogeneous particle population containing both strongly hindered and mobile particles in 

mucus. Fluorescent HSV-1 virions were prepared via expression of a VP22-GFP tegument 
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protein construct, packaged at high copy numbers while maintaining native viral envelope 

integrity, as previously described [9]. Fluorescent, mCherry-Gag labeled HIV-1 virions 

pseudotyped with a YU-2 envelope were prepared similarly to previously described [8, 35].

2.3. Collection of human mucus

Human CVM was obtained from healthy female donors at random times in their menstrual 

cycles, following a protocol approved by the University of North Carolina Institutional 

Review Board (IRB), as previously described [16]. Briefly, undiluted CVM secretions, 

averaging 0.3 g per sample, were obtained from women using a self-sampling menstrual 

collection device; participants inserted the device into the vagina for at least 30 s, removed 

it, and placed it into a 50 mL centrifuge tube. Samples were centrifuged at 230 ×g for 2 min 

to collect the secretions. Samples used in this study had total anti-HSV-1 IgG <150 ng/mL, 

measured by whole virus ELISA as previously described [9]. Human airway mucus was 

obtained from healthy patients intubated for general anesthesia during elective surgery, 

following an IRB-approved protocol. After surgery, the endotracheal tube was removed 

from the patient, and mucus coating the tube was collected by centrifugation [36]. Airway 

mucus that was non-uniform in color or consistency or had visible blood contamination was 

discarded. Samples were stored at 4°C until microscopy, typically within 24 hours.

2.4. Multiple particle tracking in human mucus

Dilute particle solution (~108-109 particles/mL, 1 μL or 5% v/v) was mixed gently into 20 

μL of human mucus in custom-made chambers, and samples were incubated 1 hour at 37 °C 

before microscopy. The translational motions of the particles were recorded using an 

EMCCD camera (Evolve 512; Photometrics, Tucson, AZ) mounted on an inverted 

epifluorescence microscope (AxioObserver D1; Zeiss, Thornwood, NY), equipped with an 

Alpha Plan-Apo 100×/1.46 NA objective, environmental (temperature and CO2) control 

chamber and an LED light source (Lumencor Light Engine DAPI/GFP/543/623/690). 

Videos (512 × 512, 16-bit image depth) were captured with MetaMorph imaging software 

(Molecular Devices, Sunnyvale, CA) at a temporal resolution of 66.7 ms and spatial 

resolution of 10 nm (nominal pixel resolution 0.156 μm/pixel) for 20 s. The tracking 

resolution was determined by tracking the displacements of particles immobilized with a 

strong adhesive, following a previously described method [37]. Trajectories were analyzed 

using MATLAB software, following methods originally developed in IDL by Crocker and 

Hoffman [1]. Sub-pixel tracking resolution was obtained by determining the precise location 

of particle centroids by light intensity-weighted averaging of neighboring pixels. As with 

simulation data, trajectories less than 5 frames in length were excluded, and trajectories 

belonging to the same particle were treated as distinct traces if separated by more than 5 

frames.

2.5. Conventional vs. frame-by-frame MPT analysis

The coordinates of particle centroids for each individual trace were transformed into time-

averaged mean squared displacements (MSD or <Δr2(τ)>), calculated as <Δr2(τ)>= [x(t + τ) 

− x(t)]2 + [y(t + τ) − y(t)]2 (where displacements x and y are functions of time t and time 

scale or time lag τ), and Deff, calculated from MSD=4Deffτ, as previously demonstrated [8, 
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11, 16]. With conventional MPT analysis, ensemble averages and distributions of MSD or 

Deff were calculated based on all traces without any weighting. For frame-by-frame MPT 

analysis, calculations were first performed at the individual frame level based only on 

particles present in that particular frame (i.e., capturing instantaneous ‘snapshots’ of particle 

behavior), before averaging across all frames in the movie. For example, the geometrically-

averaged ensemble MSD was calculated by first averaging across the MSDs of particles 

present at each frame, and then averaging the resulting mean MSDs across all frames (Fig. 

S1). Trajectories of n ≥ 70 particles per frame and n ≥ 150 traces were analyzed for each 

experiment (see Table S1 for averages per dataset); note that the conventional minimum of 

100 individual particle traces throughout the video typically corresponds n ≤ 40 particles per 

frame. Trapped particles were defined by Deff < 10−1.5 μm2/s at τ = 0.2667 s (time scale 

corresponding to a minimum trajectory length of 5 frames and a frame rate of 15 Hz). This 

cutoff was determined empirically based on multiple datasets of strongly hindered and 

mobile nanoparticles (e.g., PS-COOH and PS-PEG nanoparticles) in human mucus [11, 16]; 

for particles 200 nm and larger, a Deff < 10−1.5 μm2/s effectively means that the particles 

move much less than their diameters within 0.2667 s.

2.6. First passage time analysis

In order to demonstrate how the choice of conventional vs. frame-by-frame weighting can 

impact predictions of particle population behavior, we performed a first passage time 

analysis and calculated the expected time for 10% and 50% of a particle population to pass 

through a 50 μm thick layer of mucus. Given the diffusivity D of a particle, the probability 

that the particle has not passed through a layer of thickness L as of a given time t may be 

described by an explicit “survival function”. Using T to denote the time it takes for the 

particle to pass through the layer, the formula for this “survival function” is

where exp is the exponential function and k is an integer from 0 to ∞. Suppose that a 

heterogeneous population of particles have individual diffusivities {Di} with respective 

weights {wi} where i ranges from 1 to the number of particles N. The expected fraction of 

particles that remain in the fluid layer as of time t is then equivalent to the following 

weighted survival function:

For the conventional weighting method, we set wi for all i. For the frame-by-frame method, 

wi is set to be the number of frames in which the ith particle is present. For each weighting, 

we calculated the times t10 and t50 for which P(T > t10) = 0.9 and P(T > t50) = 0.5.
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2.7. Statistical analysis

Data averages are presented as means with standard error of the mean (SEM), unless 

otherwise indicated. Statistical significance was determined by a one-tailed, Student's t-test 

(α = 0.05). For first passage time analysis, due to inherent variations in the first passage 

times for different data sets, statistical significance was determined for time estimates based 

on frame-by-frame analysis normalized to corresponding time estimates based on 

conventional analysis (a value of 1 indicates no difference).

3. Results

To measure the extent of the bias toward faster particles at shorter time scales and to 

evaluate methods to correct for it, we first obtained a ‘ground-truth’ dataset reflecting 

known particle heterogeneity in a complex environment by simulating 3D Brownian 

diffusion of a 50:50 mixture of randomly seeded ‘mobile’ and ‘strongly hindered’ particles 

(see Methods). Following conventional MPT analysis practice, we examined the Deff 

distribution based on all traces. At a time scale of 0.2667 s (corresponding to a minimum of 

5 frames per trace and a frame rate of 15 Hz), the Deff distribution was markedly skewed 

towards the fast-moving particles (~85% vs. the theoretical 50%; Fig. 2A). Only roughly 

25% of traces were accounted for by particles present in the focal plane at the start of the 

simulation, while the remaining 75% were ‘excess’ traces due to these particles leaving and 

re-entering the focal plane multiple times, or to new particles entering the focal plane (Fig. 

S2; also see Table S1). Not surprisingly, the geometrically-averaged ensemble MSD (Fig. 

2B) showed a similar bias toward the faster fraction at shorter time scales (~10-fold higher 

than expected at a time scale of 0.2667 s).

To validate this in silico prediction, we next performed MPT on an equal mixture of 

fluorescent 200 nm PEG-modified (PS-PEG; muco-inert and nearly uniformly fast-moving, 

see Fig. S3) and carboxyl-modified (PS-COOH; muco-adhesive and nearly uniformly 

strongly hindered) polystyrene beads introduced into human cervicovaginal mucus. Our 

results, in good agreement with the analysis of simulated data above, show that the Deff 

distribution (Fig. 2C) was skewed substantially toward faster-moving particle fractions 

(again ~85% vs. the theoretical 50%), and the geometrically-averaged ensemble MSD (Fig. 

2D) was ~5-fold greater at a time scale of 0.2667 s than the geometric average of the MSDs 

for PS-PEG and PS-COOH measured separately. Naturally, any subsequent analysis or 

derivation based on this dataset would overweigh contributions by the fast-moving 

subpopulations of PS-PEG particles, which would in turn result in artificial and significant 

overestimates of the true fraction of particles that can diffuse across a mucus layer of a given 

thickness over time.

To resolve this bias, we hypothesized that each instantaneous snapshot of an imaging 

volume approximately captures the distribution of particle behavior at that instant; in other 

words, the fraction of ‘mobile’ vs. ‘strongly hindered’ particles is approximately at steady 

state and thus time-independent over the time frame of analysis. Averaging across a series of 

snapshots over the duration of a recorded movie would in turn provide an accurate measure 

of the true heterogeneity of particle behavior within the imaging volume. In practice, this 

translates to first measuring the transport rates of individual particles across available 
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frames/time scales, followed by calculating timescale-dependent MSD or Deff at each frame 

based on the particles present in that particular frame, and finally averaging across all frames 

in the movie. This method results in a weighted averaging of particle contributions to MSD 

or Deff calculations, which contrasts sharply with conventional particle tracking analysis that 

inherently assumes particles are present throughout the entire movie and averages across all 

particle traces regardless of the duration they are present in the focal volume.

We applied this ‘frame-by-frame’ approach to both the simulated and experimental data 

described above. Our proposed algorithm indeed recovered the 50-50 distribution of 

‘strongly hindered’ vs. ‘mobile’ particles from simulation (Fig. 3A), with ~50% mobile 

particles at each frame and an average of 49 ± 1% mobile particles across all frames and 

three independent datasets (Fig. S4A and B). In addition to closely matching the expected 

distribution of individual particle Deff, the frame-by-frame ensemble average MSD also 

matched theoretical values well (Fig. 3B; <10% higher at a time scale of 0.2667 s compared 

to 10-fold higher previously). Applying the same approach to the experimental data, the 

average fraction of moving particles decreased from ~84% when analyzed on a trace basis 

to ~49% when analyzed on a frame-by-frame basis, in good agreement with the input 50:50 

beads ratio. Likewise, the ensemble MSD was only ~10% lower than the expected value, 

compared to 5-fold higher previously. For both simulated and experimental data, the small 

differences between theoretical values and measurements produced by the frame-by-frame 

method were statistically insignificant (p > 0.05). Finally, frame-by-frame analysis also 

accurately captured the true particle distribution across the full range of heterogeneity (Fig. 

S5; note for homogeneous populations that frame-by-frame analysis yields almost identical 

results as conventional analysis). This illustrates the broad utility of our approach, which can 

be applied to any particle population.

To illustrate the impact of tracking analysis approach on quantitative evaluation of the 

behavior of drug carrier nanoparticles in biological secretions, we compared first passage 

time estimates (i.e. the time needed for a particle to diffuse across a layer of defined 

thickness) for polymeric nanoparticles (d ~ 100 nm) in human airway mucus, derived from 

conventional vs. frame-by-frame methods (Fig. 4). With the conventional method, the 

estimated time for 10% and 50% of the particles to diffuse across a 50 μm thick mucus 

layer, the approximate thickness of mucus lining the bronchial airways [38], was ~0.8 and 16 

hours, respectively. However, applying the frame-by-frame approach to remove systematic 

bias, the duration required was 1.6 and 46 hours, respectively, implying that a substantially 

lower fraction of the same nanoparticles would be able to penetrate airway mucus, and 

virtually all would be eliminated by mucociliary clearance. For drug delivery applications, 

this suggests a larger particle dose than previously estimated would be needed to achieve the 

desired therapeutic effect. Similar distinct conclusions are reached when we apply the 

analysis to HSV-1 and HIV-1 in human cervicovaginal mucus. Indeed, the time required for 

50% of either HSV-1 or HIV-1 virions to penetrate a ~50 μm thick mucus layer overlaying 

the vaginal epithelium [27] was 30-40 hours by frame-by-frame analysis (i.e., substantially 

longer than the estimated 12-24 hour mucus clearance rate), in sharp contrast to ~1 hour by 

conventional estimate. The marked difference in the fraction of virions estimated to 

penetrate cervicovaginal mucus over time would substantially impact the amount of 

antiretroviral drugs or antibodies that must be dosed to block infection [9, 27]. These results 
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underscore the importance of choosing the correct MPT analytical routine to quantify and 

interpret tracked particle traces.

4. Discussion

Particle tracking is a powerful and popular tool for gaining insight into the transport 

dynamics or fate of drug carrier nanoparticles in biological environments, as well as the 

biochemical or biophysical interactions influencing particle motions. Unfortunately, the 

common practice of quantifying nanoparticle behavior based on simple summation and/or 

averaging of all tracked particle traces can result in misleading biases towards fast-moving 

subpopulations, and consequently far overestimate the extent to which drug carrier 

nanoparticles can overcome specific biological barriers. Here, we show that this bias can be 

easily rectified by the frame-by-frame analytical approach, which can be applied to any set 

of particle tracking data independent of particle speed or tracking algorithm. We believe this 

methodology presents an important step towards objective and accurate assessment of the 

heterogeneous transport behavior of submicron drug carrier particles, which may 

substantially impact conclusions about the efficiencies with which drug carrier nanoparticles 

penetrate biological barriers of interest, as well as conclusions about the microstructural and 

rheological properties of these barriers [11, 39].

The inherent bias in 2D particle tracking towards fast-moving populations at shorter time 

scales may be partially corrected by alternative approaches. For example, we and others [9, 

16, 40] have previously performed tracking analysis only on nanoparticles that remain in the 

focal plane for a minimum of 50 frames, allowing us to obtain more accurate measurement 

of each individual particle trace at a timescale corresponding to 1 s or ~15 frames (n = 35 

data points within 50 frames). This effectively excludes from analysis a large number of 

fast-moving particles present for less than 50 frames in each specimen, which naturally 

reduces the bias towards fast-moving particles (Fig. S5). Nevertheless, this method is 

imperfect because (i) the appropriate minimum number of frames depends on the speed of 

the particles as well as thickness of the focal plane, and (ii) almost all fast-moving outlier 

fractions are omitted from analysis, making it impossible to accurately sample particle 

mobility. Only frame-by-frame analysis, with a low minimum number of frames required, is 

expected to consistently capture the true distribution (Fig. S6). Alternatively, Savin and 

Doyle previously proposed applying a normalized weight proportional to the duration of 

each trajectory to individual particle data before summing to obtain the mean MSD [32], and 

Mellnik et al. presented a method of analyzing trajectories grouped into statistically distinct 

clusters [41]. While these techniques are adept at deriving unbiased ensemble or cluster 

averages, they are not yet widely adopted, and may not readily provide an unbiased 

representation of heterogeneity in particle transport behavior, including the instantaneous 

distribution of particle transport rates. The method described here adds to the prior work by 

capturing the full distribution, including sub-populations of interest, as well as time-

dependent phenomena. In conjunction with techniques such as sub-trajectory analysis [6], 

the frame-by-frame analysis approach may be applied to study, for example, the transport of 

drug carriers delivered with mucolytics that break down mucus over time, or the trapping of 

viruses in mucus by antibodies as they accumulate on the virus surface [27]. Lastly, a 

researcher should in theory obtain the same results as with our frame-by-frame averaging 
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approach by tracking only particles that appear in the very first frame of each video. 

However, this method would require recording and analyzing many more videos to obtain 

the same level of confidence/accuracy.

Although the ‘frame-by-frame’ analytical approach can effectively minimize biases that 

result from inherent heterogeneity in particle motions, a number of limitations to particle 

tracking analysis remain that should be noted when applying MPT in the context of drug 

delivery. First, limited spatiotemporal resolution can result in static and dynamic errors, 

previously discussed by Savin and Doyle [42], particularly for small, inadequately labeled 

and/or fast moving particles. Second, because proportionally fewer fast-moving particles are 

tracked for long durations, the distribution skews toward slower particles at longer time 

scales; this bias cannot be corrected by the frame-by-frame averaging approach as it is a 

fundamental limitation of 2D particle tracking (Fig. 3B and D and Fig. S4C). While rapid 

3D imaging would resolve this problem, the technological requirements continue to be 

prohibitive for most researchers. In particular, accurate 3D particle tracking necessitates a 

high frame rate to follow the motions of rapidly diffusing particles, as well as more complex 

tracking algorithms. As a result, 3D particle tracking remains far less popular than 2D 

particle tracking. Third, MPT analysis is predicated on the ability to accurately capture all 

particles while they are in the focal plane. Although a multitude of tracking algorithms exist, 

the high degree of noise in biological systems, often combined with low signal from 

inadequately labeled nanoparticles or viruses, can make identifying and tracking individual 

nanoparticulates challenging even for the most sophisticated of algorithms. Thus, in most 

instances, it is inadequate to blindly rely on the output of software trackers, and substantial 

human intervention continues to be necessary to ensure accurate tracking and proper 

elimination of imaging artifacts. Fourth, heterogeneity in a system may exist not only within 

each movie but also more globally throughout a sample; in such instances, a larger number 

of videos would be required to capture this level of heterogeneity.

In summary, multiple particle tracking is increasingly used to assess the transport behavior 

of drug and gene carriers in complex biological environments, such as the tumor 

microenvironment or the cell cytoplasm. We introduced here a simple yet rigorous analytical 

routine that avoids a common and significant pitfall with applying conventional multiple 

particle tracking analysis to submicron particles, which frequently results in substantial 

overestimation of particle diffusion kinetics. Our method of weighting particle traces on a 

‘frame-by-frame’ basis is broadly applicable to analysis of all submicron particles 

independent of the particle speed, the nature of the specimen, or trace-linking algorithms, 

and represents an important improvement in the continued use of multiple particle tracking 

to enhance the delivery of therapeutics across major biological barriers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustrating potential bias in particle tracking of heterogeneous systems. Particles 

that are trapped due to steric or adhesive interactions with the surrounding medium remain 

fixed in place, while those that avoid these interactions diffuse into and out of the focal 

plane. As a result, many more traces may be recorded in the focal plane for fast moving 

(‘Mobile’) particles vs. slow or trapped (‘Strongly hindered’) particles. Black arrows 

indicate moving particles for which two distinct traces were recorded due to the particles 

moving into and out of the focal plane multiple times.
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Figure 2. 
Application of conventional MPT analysis to simulated and experimental particle trajectory 

data. (A,C) Deff distribution and (B,D) ensemble geometric average MSD based on 

simulated or experimentally measured particle traces, respectively. In (A,C), the vertical 

dashed line indicates the cutoff between strongly hindered and mobile particles (see 

Methods). In (B,D), expected MSD values are based on simulation parameters (B) or the 

geometric average of MSDs for PS-COOH and PS-PEG particles imaged separately (D). 

Error bars represent standard error across 3 independent data sets or mucus samples.
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Figure 3. 
Application of frame-by-frame analysis to simulated and experimental particle trajectory 

data. (A,C) Deff distribution and (B,D) ensemble geometric average MSD. In (A,C), the 

vertical dashed line indicates the cutoff between strongly hindered and mobile particles (see 

Methods). Error bars represent standard error across 3 independent data sets or mucus 

samples.
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Figure 4. 
Effect of conventional vs. frame-by-frame analysis on estimates of the time required for (A) 

10% or (B) 50% of particles to pass through a 50 μm thick mucus layer. Data is shown for 

100 nm PS-PEG in human airway mucus, and HSV-1 and HIV-1 in human cervicovaginal 

mucus samples, in which the particles or virions exhibited heterogeneous transport behavior. 

Error bars represent standard error across 3 independent mucus samples. * indicates 

statistically significant difference compared to conventional analysis.

Wang et al. Page 16

J Control Release. Author manuscript; available in PMC 2016 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


